A Mixed Finite Element Method for Navier-stokes Equations

نویسندگان

  • ABDESLAM ELAKKAD
  • AHMED ELKHALFI
  • NAJIB GUESSOUS
  • Abdeslam Elakkad
  • Ahmed Elkhalfi
  • Najib Guessous
چکیده

This paper describes a numerical solution of Navier-Stokes equations. It includes algorithms for discretization by finite element methods and a posteriori error estimation of the computed solutions. In order to evaluate the performance of the method, the numerical results are compared with some previously published works or with others coming from commercial code like ADINA system. AMS Mathematics Subject Classification : 65F10, 65F05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Dual-mixed Finite Element Methods for the Navier-stokes Equations

A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed. Mathematics Subject Classification. 65N60,...

متن کامل

Optimal error bounds for two-grid schemes applied to the Navier-Stokes equations

We consider two-grid mixed-finite element schemes for the spatial discretization of the incompressible Navier-Stokes equations. A standard mixed-finite element method is applied over the coarse grid to approximate the nonlinear Navier-Stokes equations while a linear evolutionary problem is solved over the fine grid. The previously computed Galerkin approximation to the velocity is used to linea...

متن کامل

Resolution of Unsteady Navier-stokes Equations with the〖 C〗_(a,b) Boundary condition

in this work, we introduce the unsteady incompressible Navier-Stokes equations with a new boundary condition, generalizes the Dirichlet and the Neumann conditions. Then we derive an adequate variational formulation of timedependent NavierStokes equations. We then prove the existence theorem and a uniqueness result. A Mixed finite-element discretization is used to generate the nonlinear system c...

متن کامل

A Posteriori Error Estimator for Mixed Approximation of the Navier-Stokes Equations with the Boundary Condition

In this paper, we introduce the Navier-Stokes equations with a new boundary condition. In this context, we show the existence and uniqueness of the solution of the weak formulation associated with the proposed problem. To solve this latter, we use the discretization by mixed finite element method. In addition, two types of a posteriori error indicator are introduced and are shown to give global...

متن کامل

A Mixed Finite Element Method on a Staggered Mesh for Navier-stokes Equations

In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral Q1 × Q1 − P0 element approximation for the Navier-Stokes equations. First-order error estimates are obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010